Revisit complexation between DNA and polyethylenimine - Effect of uncomplexed chains free in the solution mixture on gene transfection.

نویسندگان

  • Yanan Yue
  • Fan Jin
  • Rui Deng
  • Jinge Cai
  • Yangchao Chen
  • Marie C M Lin
  • Hsiang-Fu Kung
  • Chi Wu
چکیده

Our revisit of the complexation between anionic DNA and cationic polyethylenimine (PEI) in both water and phosphate buffered saline (PBS) by using a combination of laser light scattering (LLS) and gel electrophoresis confirms that nearly all the DNA chains are complexed with PEI to form polyplexes when the molar ratio of nitrogen from PEI to phosphate from DNA (N:P) reaches ~3, but the PEI/DNA polyplexes have a high in-vitro gene transfection efficiency only when N:P≥10. Putting these two facts together, we not only conclude that this extra 7 portions of PEI chains are free in the solution mixture, but also confirmed that it is these free PEI chains that substantially promote the gene transfection no matter whether they are applied hours before or after the administration of the much less effective PEI/DNA polyplexes (N:P=3). The uptake kinetics measured by flow cytometry shows that the addition of free PEI leads to a faster and more efficient cellular internalization of polyplexes, but these free PEI chains mainly contribute to the subsequent intracellular trafficking. In contrast, the bound PEI chains mainly play a role in the DNA condensation and protection, leading to a different thinking in the development of non-viral vectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Revisiting Complexation Between DNA and Polyethylenimine: The Effect of Uncomplexed Chains Free in the Solution Mixture on Gene Transfection

In comparison with viral vectors, more efforts have recently been spent on the development of non-viral vectors because of few fatal accidents in clinical trials of viral carriers [1–3]. It has been well recognized that non-viral vectors have their own advantages, such as low immune toxicity, construction flexibility and facile fabrication, in the gene transfection, especially for clinical appl...

متن کامل

Modified Polyethylenimine: Self Assemble Nanoparticle Forming Polymer for pDNA Delivery

Objective Polyethylenimine (PEI), a readily available synthetic polycation which has high transfection efficiency owing to its buffering capacity was introduced for transfection a few years ago. But it has been reported that PEI is cytotoxic in many cell lines. In this study, in order to enhance the transfection efficiency of 10 kDa PEI and reduce its toxicity, hydrophobic residues were grafte...

متن کامل

Effective in vitro gene delivery to murine cancerous brain cells using carbon nanotube-polyethylenimine conjugates

Objective(s): Carbon nanotube (CNT) has been widely applied at molecular and cellular levels due to its exceptional properties. Studies based on conjugation of CNTs with biological molecules indicated that biological activity is preserved. Polyethylenimine (PEI) is explored in designing novel gene delivery vectors due to its ability to condense plasmid DNA through electrostatic attraction. In t...

متن کامل

Brevinin-2R-linked polyethylenimine as a promising hybrid nano-gene-delivery vector

Objective(s): Polyethylenimine (PEI) is one of the most widely used polymers in gene delivery. The aim of this study was to modify PEI by replacing some of its primary amines with Brevinin 2R (BR-2R) peptide in order to increase the efficiency of gene delivery.Materials and Methods: Polyethylenimine was modified by BR-2R peptide by two d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of controlled release : official journal of the Controlled Release Society

دوره 155 1  شماره 

صفحات  -

تاریخ انتشار 2011